Study Guide Introduction to Evolution Lecture 4: Phylogeny Reconstruction

Important Terms and Concepts

Advanced Character Analogy Apomorphy **Bayesian Analysis Binomial Nomenclature** Bootstrapping Branch Swapping Chronogram Clade Cladistics Classification Code of Nomenclature Consensus Tree Consistency Index **Convergent Evolution** Data Matrix **Distance Matrix** Dendrogram **Distance Measure Evolutionary Systematics** Heuristic Search Homology Homoplasy Ingroup Internode Linnaean Hierarchy Maximum Likelihood Modern Synthesis Monophyletic Node Nomenclature Numerical Taxonomy Ocham's Razor Outgroup Parallel Evolution Paraphyletic Parsimony Phenetics Phenogram Phylogenetics Phylogenetic Classification (Systematics) Phylogeny Phylogram Plesiomorphy

Polyphyletic Polytomy **Primitive Character** Priority of Names in Nomenclature Reversal Rooted Tree Scaled Tree Similarity Sister Group Splitter Synapomorphy Synonym **Systematics** Taxon Taxonomy Topology Tree of Life Type Concept Tree Root **UPGMA** Willi Hennig

Study Questions

- 1. What is systematics? What sort of things do systematists do?
- 2. What is the importance of classification and stable nomenclature?
- 3. What are some differences between artificial, natural, and phylogenetic systems of classification?
- 4. What are some rules that are applied to scientific names? Who makes these rules? Why are they important?
- 5. Compare and contrast the basic goals and methods of phenetics (numerical taxonomy) and cladistics.
- 6. What are homologous characters? Why is their importance in reconstructing phylogenies?
- 7. What is cladistics? What kinds of problems does cladistics help us to solve? In what way does cladistics differ from older methods?
- 8. What is a phylogeney? What is a phylogenetic tree? From what general kinds of data can phylogenies be inferred, and what general issues must researchers address when estimating phylogenies?
- 9. What is a synapomorphy, and why are these characters uniquely valuable for phylogeny inference? What is the name of the methods that use these principles for phylogeny inference?
- 10. What is homoplasy? What processes give rise to it, and what specific, problematic pattern does each produce? What qualities do researchers look for in characters in hopes of reducing homoplasy?

- 11. What is the general logical criterion of parsimony? What is the rationale for invoking parsimony in phylogeny inference (i.e., what underlying evolutionary principles justify its use)?
- 12. Define the term systematics and compare and contrast phenetic with cladistic approaches to classification.
- 13. What is the principle of parsimony? What is a clade?
- 14. What is an outgroup? Why is the outgroup crucial in interpreting evolution in a clade? How can we use the concept of an outgroup to reconstruct the pattern of evolution?
- 15. What does Ockam's Razor refer to? Which cladogram version is considered the "best" (out of several which could be made for a particular group of organisms)?
- 16. Why are we interested in shared derived characters and shared ancestral characters? Give some examples from the vertebrates.
- 17. What is the difference between monophyletic and paraphyletic groups? Illustrate these concepts on a tree. Give several examples of paraphyletic groups.
- 18. What techniques does a cladist use to describe the support for clades on a tree? How do these techniques work? How does a cladist deal with multiple most-parsimonious trees in the analysis?